智慧校园平台
| | |
我的订单(0)
|
未读通知 全部标为已读
|
APP端下载
Android
iPhone
|
加入购物车
¥30
原价:30
分享给朋友:
难度:进阶
|
9人点赞
94397人已学习
|
视频有问题?
课后练习 0/35 综合试题 0/26
购买说明
3天无理由退款
一年有效期
3天无理由退款:退款将以超级币形式退至您的超级课堂学习账户,便于您重新选购其他课程。恶意退款将被冻结账号。
一年有效期:自购买之日起,有效期内可反复观看视频,并可至我的题库温习所有练习,有效期内若更新视频可以免费享有。
课程简介

相比正弦余弦函数,虽然正切函数的出镜率不是很高。但一部分题目依然会涉及它的性质和图象。所以在这个章节,我们要来专门研究正切函数,弄清楚它的性质和图象,以及在题目中,正切函数性质的应用。还有正切复合函数的性质和图像。对正切函数比较陌生的同学们,赶紧购买学习吧!

视频列表
  • 1、学习正切函数的性质和图象,了解它的定义域,值域,周期,奇偶性,增碱性
    2、 掌握正切函数图象的作法,可以用“三点两线法”作正切曲线的简图
  • 1、利用正切函数的性质和图象,判断很多复合函数图象的大致位置
  • 1、​比较正切值大小的题型。可以把所有角的正切值kπ±α都化为成锐角的正切值,在同一个单调区间内比较
    2、 求值域和解正切不等式的题型。都和函数值范围有关,可以借助图象来判断
  • 1、正切复合函数的周期是$T=\frac{\pi }{\left | \phi \right |}$,值域为$R$,定义域、对称中心、单调性,都可以通过整体法代入正切函数的定义域、对称中心横坐标、单调区间内求出
    2、 正切复合函数的单调性由系数$A$与$\omega $决定
    3、 通过已知的单调区间,还可以推出未知参数的范围
  • 1、正切复合函数图象的作法,可以用“三点两线法”或“变换法”。从标准变复合,先平移变换会更容易。如果先进行周期变换,那么在得到$y=tan\omega x$的图象后,就要左右平移$\left | \dfrac{\phi }{\omega } \right |$个单位
    2、 利用图象变换,还认识了余切函数的图象和性质
    3、 由图象求参数$A$、$\omega $、$\phi $($A>0$,$\omega >0$)的技巧。$\omega $由周期公式求,周期即相邻渐近线的距离,或相邻对称中心距离的两倍。$A$与$\phi $要通过待定系数法来求,求$\phi $通常代入图象的零点,求$A$通常代入在竖直方向上具有高度的点
  • 综合练习
    下载题目
    做题0/26
我要评论
发表评论
表情
热门评论
已购买: 94397人最新购买
  • 1 超级学员1
  • 2 超级学员
  • 3 我有紫手刀
  • 4 超级学员2780988
  • 5 超级学员3479258
  • 6 超级学员
  • 7 超级学员3806409
  • 8 萧恩医生
  • 9 超级学员4249738
  • 10 小猫老弟
猜你需要
视频X18 习题X259
共 18集,已更新第 18集
集合上
197687人在学
¥ 78 ¥ 78
视频X16 习题X259
共 16集,已更新第 16集
集合下
128353人在学
¥ 78 ¥ 78
视频X14 习题X171
共 14集,已更新第 14集
函数的概念和表示
220955人在学
¥ 0 ¥ 0
视频X23 习题X308
共 23集,已更新第 23集
复合函数解析式求法
127533人在学
¥ 72 ¥ 72
视频反馈
添加时间节点
提交
超级币不够?
分享也能赚取超级币哦!
使用您的分享链接/邀请码注册的朋友可获得高达100超级币的首次优惠学习。向朋友发送优惠学习邀请,成功邀请第一个可获得100超级币,之后成功邀请朋友加入学习也可获得20超级币每位,金额会自动存入您的账户。不要忘了去任务中心领取哦!
方式1
将优惠码000000FQA复制并发送给好友
直接复制话术:
使用邀请码“000000FQA”首次购买课程可直减 100超级币。兴趣产生时,教育自然开始, 点击查看详情
复制
方式2
直接扫描以下二维码,进入分享码页面,在手机端分享